2uEsy Creating Al
Powered Web
Applications with
Flask Django and
Streamlit

Archana Anandrao Nikose, Sneha Sujit

Dhande, B. Persis Urbana lvy
PRIYADARSHINI BHAGWATI COLLEGE OF
ENGINEERING, MOTHER TERESA INSTITUTE OF
ENGG AND TECHNOLOGY

Creating Al Powered Web Applications with
Flask Django and Streamlit

!Archana Anandrao Nikose, assistant professor, computer science and engineering,
Priyadarshini Bhagwati College of Engineering, Nagpur, Mobile number: 824 800 2831, Mail id:
nikose.ar@gmail.com.

2Sneha Sujit Dhande, Assistant Professor, Computer Science and Engineering, Priyadarshini
Bhagwati College of Engineering, Nagpur, Mobile number: 824 800 2831, Mail id:
snehadhakl16@gmail.com.

3B. Persis Urbana lvy, Dean (CSE & Allied branches), Mother Teresa Institute of Engg and
Technology, Melumoi (Post), Palamaner - 517408, Mail id: urbana23@gmail.com.

Abstract

The convergence of artificial intelligence (Al) and web development has catalyzed a new
generation of intelligent applications capable of real-time decision-making, personalized
interaction, and dynamic data visualization. Despite significant progress in Al model training and
evaluation, the deployment of these models into production-ready web systems remains a complex
and underexplored domain. This book chapter presents a comprehensive investigation into the
deployment strategies of Al models using three prominent Python-based frameworks—Flask,
Django, and Streamlit. Each framework offers a unique set of capabilities tailored to different
stages of Al application development, ranging from lightweight microservices to scalable full-
stack platforms and interactive analytical dashboards. The chapter examines critical deployment
metrics such as latency, throughput, and scalability, providing an in-depth comparative analysis of
how each framework performs in operational environments. Real-world use cases—including
natural language processing, image classification, recommendation systems, and decision
support—are explored to illustrate practical implementation patterns. In addition, the chapter
highlights architectural trade-offs, integration workflows, and security considerations essential for
reliable and maintainable Al-powered web systems. Through this research-driven synthesis, the
chapter addresses a key gap in the literature by bridging the development-to-deployment divide,
offering actionable insights for researchers, developers, and industry practitioners seeking to
operationalize machine learning models effectively.

Keywords: Al deployment, Flask, Django, Streamlit, web applications, model integration

Introduction

The rapid proliferation of artificial intelligence (Al) technologies has significantly transformed
the digital landscape, driving a paradigm shift from static data processing to intelligent, adaptive,
and context-aware applications [1]. This evolution has created unprecedented opportunities for
integrating machine learning (ML) models into web-based platforms, enabling real-time inference,
personalized content delivery, and intelligent automation [2]. considerable advancements in the
development of sophisticated Al models, their deployment into production-ready web systems

mailto:nikose.ar@gmail.com
mailto:snehadhakl16@gmail.com
mailto:urbana23@gmail.com

remains a critical bottleneck [3], [4]. Bridging this gap requires not only technical acumen in Al
but also deep expertise in web development frameworks that can support scalable, maintainable,
and secure Al application infrastructures [5].

The demand for deploying Al models in live environments has necessitated the exploration of
various Python-based web frameworks that align with different use cases and system requirements
[6]. Flask, Django, and Streamlit have emerged as three of the most prominent tools in this domain,
each catering to a distinct subset of application needs [7]. Flask is lauded for its lightweight nature
and modular design, making it suitable for microservices and custom API endpoints [8]. Django,
with its comprehensive ecosystem, is preferred for building full-stack, scalable applications with
robust security and database management [9]. Streamlit, in contrast, is optimized for rapid
development of interactive dashboards and data exploration tools, tailored specifically for data
scientists and Al researchers. Understanding the strengths, limitations, and appropriate contexts
for each of these frameworks is imperative for effective Al deployment [10].

In this context, performance metrics such as latency, throughput, and scalability are central to
evaluating deployment strategies [11]. Al web applications, particularly those offering inference
services, must be capable of handling concurrent requests with minimal delay [12]. Latency affects
user experience, especially in applications involving real-time predictions such as image
classification, fraud detection, or recommendation engines [13]. Throughput is critical in high-
volume systems such as health diagnostics or financial forecasting platforms, where rapid response
across numerous sessions is mandatory. Scalability ensures that the deployed Al services can adapt
to increasing workloads without degradation of performance [14]. Thus, framework selection must
be aligned with these metrics to ensure efficient, user-centric Al services that can evolve with
changing operational demands [15].

